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ABSTRACT 

Optimizing rice yields in rainfed, monsoon-dependent systems is critical for sustainable agriculture amid 

climate variability. This study introduces a novel data-driven framework for precision crop planning in 

Cuttack, India, a representative smallholder region reliant on monsoons. Integrating multivariate 

regression, principal component analysis (PCA), k-means clustering, and random forest modelling, we 

achieved precise rice yield predictions (R² = 0.993, p < 0.001), ranging from 3563.2 kg/ha in 

Narasinghpur to 4531.9 kg/ha in Damapada. PCA condensed 12 agro-climatic variables into two 

components (84.4% variance), identifying soil texture and water availability as key yield drivers. K-

means clustering delineated three agro-climatic zones, guiding crop recommendations: rice for clay-rich, 

high-rainfall zones; pulses for drought-prone, sandy soils; and vegetables for phosphorus-rich areas. Soil 

organic carbon (SOC) enrichment simulations showed yield gains of up to 708.98 kg/ha under drought, 

enhancing resilience. Random forest models outperformed linear regression (RMSE: 49.34 vs. 115.15 

kg/ha), capturing non-linear agro-ecological interactions. Site-specific fertilizer optimization reduced 

diammonium phosphate (DAP) use by 2.92–21.40 kg/ha, minimizing costs and environmental impacts. 

This block-level framework, the first of its kind in a monsoon-driven context, offers a scalable model for 

resource-efficient, climate-resilient agriculture across global rainfed systems. Future multi-season 

validations and mobile-based advisories could enhance farmer adoption. 

Keywords: precision agriculture, rice yields, soil organic carbon, climate resilience, monsoon systems, 

machine learning 
  

 
 

Introduction 

Rainfed agriculture, supporting over 60% of the 

global population, faces increasing challenges from 

climate change, including erratic monsoons, rising 

temperatures, and declining soil fertility (Pathak, 

2023). In India, where 52% of cultivated land is 

rainfed, rice a staple for millions suffers yield gaps of 

2–5 t/ha due to spatial variability in soil texture, 

nutrient availability, and water resources (Jat et al., 

2022). Precision agriculture offers transformative 

potential to address these gaps by tailoring 

management to local conditions, yet its adoption in 

smallholder, monsoon-dependent systems remain 

limited due to technological and institutional barriers 

(De Clercq & Mahdi, 2024). 

Cuttack district, Odisha, exemplifies these 

challenges, with rice yields varying from 3400 kg/ha in 

drought-prone Narasinghpur to 4800 kg/ha in clay-rich 

Damapada, driven by differences in monsoon rainfall 

(1100–1300 mm) and soil properties (Bera & Bokado, 

2024). Uniform management practices exacerbate 

resource inefficiencies, with excessive fertilizer use 

and vulnerability to climatic extremes undermining 

sustainability (Rajbonshi et al., 2024). Data-driven 

approaches, such as multivariate regression, principal 

component analysis (PCA), and clustering, have 

revolutionized crop planning in irrigated systems but 
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are rarely applied at fine spatial scales in rainfed 

contexts (Dasgupta et al., 2024). 

Soil organic carbon (SOC) is a critical lever for 

enhancing soil health and yield resilience, with 

increases of 1 g/kg linked to significant productivity 

gains under drought (Zafar et al., 2024). By aligning 

with Sustainable Development Goals (SDGs) 2 (Zero 

Hunger) and 13 (Climate Action), SOC-focused 

strategies offer dual benefits for food security and 

climate adaptation. This study presents the first block-

level integration of statistical and machine learning 

methods for precision crop planning in a monsoon-

driven system, using Cuttack as a model. Our 

objectives were to: (1) develop accurate rice yield 

prediction models using agro-climatic variables; (2) 

delineate agro-climatic zones for optimized crop 

recommendations; and (3) quantify SOC’s role in 

enhancing yields under drought. This framework offers 

a scalable solution for resource-efficient, climate-

resilient agriculture, with implications for rainfed 

systems across South Asia and beyond. 

Materials and Methods 

Study Area and Data Collection 

This study was conducted in Cuttack district, 

Odisha, India (20.5°N, 85.9°E), a monsoon-dependent 

rice-growing region comprising 14 administrative 

blocks (Figure 1). Data for the 2022–2023 growing 

season included agro-climatic variables: monsoon 

rainfall (1100–1300 mm), soil texture (clay: 7.1–

25.3%; sand: 58.7–75.1%), soil organic carbon (SOC: 

3.3–5.0 g/kg), field capacity (15–21.3%), and drought 

frequency (4–8 years). These were sourced from 

government agencies (e.g., Odisha Agricultural 

Department) and local agronomic records. Yield data 

for rice cultivars (Hira and Jaladidhan) and 

diammonium phosphate (DAP) application rates were 

obtained from block-level reports. To address spatial 

data gaps, synthetic data augmentation was applied 

using established methods (Dasgupta et al., 2024), 

validated against observed data to ensure statistical 

integrity. This approach, common in data-scarce 

smallholder systems, enabled robust model 

development despite the limited sample size (n = 14 

blocks). 

Multivariate Regression and Random Forest 

Modelling 

A multivariate linear regression model was 

developed to predict rice yields (Y, kg/ha) using 12 

agro-climatic variables as predictors: 

Y = β0 + β1X1 + β2X2 + ... + β12X12 + ε 

where β0 is the intercept, β1–β12 are coefficients, 

X1–X12 represent pH, SOC, nitrogen, phosphorus, 

potassium, sand, clay, field capacity, available water 

content, total rainfall, monsoon rainfall, and drought 

frequency, and ε is the error term. The dataset was split 

80:20 for training and testing, with model performance 

evaluated via coefficient of determination (R²) and root 

mean square error (RMSE). To ensure robustness, 5-

fold cross-validation was applied to mitigate over 

fitting risks associated with the small sample size. 

Random forest models, comprising 100 decision 

trees, were implemented to capture non-linear 

relationships, using 5-fold cross-validation and the 

Gini index for feature importance (Choudhary et al., 

2022). Both models were developed in R (v4.5.0) using 

the stats and random Forest packages. 

Principal Component Analysis (PCA) 

To reduce dimensionality, PCA was applied to the 

12 standardized agro-climatic variables: 

Z = (X - µ) / σ 

where Z is the standardized value, X is the original 

variable, µ is the mean, and σ is the standard deviation. 

Principal components were computed as: 

 

PC1 = ai1Z1 + aι2Z2 + ... + aι12Z12 

where PCi is the i-th principal component and aij are 

loading coefficients. The first two components (PC1, 

PC2), explaining 84.4% of variance, were used for 

subsequent clustering, focusing on soil texture and 

water availability as key drivers (Beillouin et al., 

2023). 

K-Means Clustering 

Agro-climatic zoning was performed using k-

means clustering on PCA scores, minimizing within-

cluster variance: 

J = Σi=₁ⁿ Σ k=₁k wik‖xi−µk‖² 

where J is the total squared distance, xi is the data 

point, µk is the cluster centroid, and wik is 1 if point i 

belongs to cluster k, otherwise 0. The elbow method 

identified three optimal clusters, delineating zones for 

tailored crop recommendations (Ramesh & Rathika, 

2020). 

SOC Impact Under Drought 

Yield responses to SOC enhancement under 

drought were simulated using: 

Y = β0 + β1(SOC) + β2(Rainfall) + ε 

where Y is rice yield (kg/ha), SOC is soil organic 

carbon (g/kg), Rainfall is monsoon rainfall (mm), and ε 
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is the error term. Simulations tested SOC increments of 

1–2 g/kg under low-rainfall scenarios (10th percentile) 

to quantify resilience benefits for rice (Hira, 

Jaladidhan) and pigeon pea (Zafar et al., 2024). 

Statistical Analysis 

Pearson’s correlation coefficient assessed 

relationships between variables: 

( )( )( ) ( ) ( )( )∑ −−−−=
2

i

2

iii
yyxx/yyxxr  

where xβ, yβ are paired observations, and x, are 

means. All analyses were conducted in R (v4.5.0) 

using stats, random Forest, and factoextra packages. 

Sensitivity analyses validated model stability, 

addressing the small sample size and synthetic data 

use. 

Results 

Principal Component Analysis and Agro-Climatic 

Zoning 

Principal Component Analysis (PCA) condensed 

12 agro-climatic variables into two components, 

explaining 84.4% of total variance (Figure 4; Table 3). 

PC1 (72.9%) was driven by clay content (−0.326), soil 

organic carbon (SOC, −0.329), and field capacity 

(−0.332), while PC2 (11.5%) was influenced by 

drought frequency (0.711) and phosphorus levels 

(−0.367), highlighting soil texture and water 

availability as key yield determinants (Beillouin et al., 

2023). K-means clustering on PCA scores identified 

three agro-climatic zones across Cuttack’s 14 blocks 

(Figure 3; Table 1). Cluster 1 (e.g., Athagarh, 

Damapada) featured clay-rich soils (18.6%), high SOC 

(5.0 g/kg), and ample monsoon rainfall (1248.3 mm), 

ideal for rice cultivation. Cluster 2 (e.g., Badamba, 

Narasinghpur) was characterized by sandy soils 

(66.6%) and frequent droughts (6.4 years), suited for 

pulses. Cluster 3 (e.g., Barang, Niali) showed high 

sand content (75.1%) and phosphorus availability 

(122.5 kg/ha), supporting vegetable cropping. Mean 

cluster characteristics are summarized in Table 2 (John 

et al., 2020; Rajbonshi et al., 2024). 

Yield Prediction Accuracy 

Multivariate regression predicted rice yields with 

high accuracy (R² = 0.993, p < 0.001), ranging from 

3563.2 kg/ha in Narasinghpur to 4531.9 kg/ha in 

Damapada (Figure 5). Model diagnostics confirmed 

linearity (Figure 8), homoscedasticity (Figure 9), and 

approximate normality of residuals with minor tail 

deviations (Figure 10), though outliers in Athagarh, 

Narasinghpur, and Nischintakoili suggest unmodeled 

factors like pest incidence (Attri et al., 2023). Monsoon 

rainfall and field capacity were primary predictors, 

each explaining 12–13% of variance, followed by SOC 

and phosphorus (~10%) (Figure 6; Zafar et al., 2024). 

Random forest models outperformed linear regression 

(RMSE: 49.34 vs. 115.15 kg/ha; Table 5), capturing 

non-linear agro-ecological interactions (Choudhary et 

al., 2022). 

SOC Enhancement Under Drought 

Simulations showed that increasing SOC by 1 

g/kg under drought conditions (10th percentile rainfall) 

improved yields by 293.28 kg/ha for Hira and 354.49 

kg/ha for Jaladidhan, doubling to 586.55 kg/ha and 

708.98 kg/ha at 2 g/kg (Figure 7; Table 4). Pigeon pea 

yields increased by 127.32 kg/ha at 2 g/kg SOC, 

confirming SOC’s role in resilience (Farooq et al., 

2022). 

Fertilizer Optimization 

Pearson correlation analysis revealed strong 

relationships between SOC and rice yield (r = 0.82) 

and phosphorus and DAP needs (r = −0.95) (Figure 

S1). DAP requirements varied from 2.92 kg/ha in 

Cuttack Sadar to 21.40 kg/ha in Damapada (Table S1; 

Figure S2), highlighting inefficiencies in uniform 

fertilizer application (Gonçalves et al., 2021). Linear 

regression slightly outperformed random forest for 

DAP prediction (RMSE: 7.37 vs. 8.57 kg/ha; Table 5). 

Discussion 

This study pioneers the block-level integration of 

multivariate regression, PCA, k-means clustering, and 

random forest modelling for precision crop planning in 

a monsoon-driven, smallholder system, offering a 

scalable framework for rainfed agriculture (Dasgupta 

et al., 2024). PCA’s reduction of 12 agro-climatic 

variables to two components (84.4% variance; Figure 

4) underscores soil texture and water availability as 

dominant yield drivers, consistent with findings in 

water-limited systems (Beillouin et al., 2023). The 

delineation of three agro-climatic zones (Figure 3; 

Table 1) enables tailored crop recommendations: rice 

for clay-rich, high-SOC Cluster 1 (e.g., Damapada), 

pulses for drought-prone Cluster 2 (e.g., 

Narasinghpur), and vegetables for phosphorus-rich 

Cluster 3 (e.g., Niali) (John et al., 2020). 

High-accuracy yield predictions (R² = 0.993; 

Figure 5) were validated by diagnostic plots 

confirming linearity (Figure 8), homoscedasticity 

(Figure 9), and approximate normality (Figure 10), 

though outliers in Athagarh and Narasinghpur suggest 

unmodeled factors like sowing delays (Attri et al., 

2023). Monsoon rainfall and field capacity explained 

12–13% of variance (Figure 6), aligning with studies 

on rainfed systems (Petropoulos et al., 2025). Random 



 
1420 Data-driven precision crop planning for enhanced rice yields and climate resilience in monsoon-dependent 

systems : A case study from Cuttack, India 

forest models’ superior performance (RMSE: 49.34 

kg/ha; Table 5) highlights their ability to capture non-

linear interactions, advancing precision agriculture 

(Choudhary et al., 2022). The high R² may reflect the 

small sample size (n = 14) and synthetic data, 

necessitating multi-season validations (Datta et al., 

2023). 

SOC enhancement significantly improved yields 

under drought, with 2 g/kg increases yielding up to 

708.98 kg/ha for Jaladidhan (Figure 7; Table 4), 

supporting SOC’s role in resilience and carbon 

sequestration (Zafar et al., 2024). The inverse 

correlation between phosphorus and DAP needs (r = 

−0.95; Figure S1) enables site-specific fertilizer 

optimization, reducing DAP use by up to 21.40 kg/ha 

(Table S1), lowering costs and environmental impacts 

(Gonçalves et al., 2021). These findings align with 

Sustainable Development Goals (SDGs) 2 (Zero 

Hunger) and 13 (Climate Action). 

This framework’s scalability to monsoon-

dependent regions (e.g., Southeast Asia) enhances its 

global relevance (Quandt et al., 2023). Future mobile-

based advisories and IoT integration could improve 

farmer adoption (Willmes et al., 2024). 

Conclusion 

This study introduces a pioneering data-driven 

framework for precision crop planning in monsoon-

dependent, smallholder systems, using Cuttack, India, 

as a model. By integrating multivariate regression, 

principal component analysis (PCA), k-means 

clustering, and random forest modelling, we achieved 

high-accuracy rice yield predictions (R² = 0.993; 

Figure 5) and delineated three agro-climatic zones for 

tailored crop recommendations (Figure 3; Table 1). 

These zones enable optimized crop selection rice for 

clay-rich Cluster 1, pulses for drought-prone Cluster 2, 

and vegetables for phosphorus-rich Cluster 3 

enhancing resource efficiency (John et al., 2020; 

Rajbonshi et al., 2024). Soil organic carbon (SOC) 

enhancement increased yields by up to 708.98 kg/ha 

under drought (Figure 7; Table 4), reinforcing its role 

in climate resilience and carbon sequestration (Zafar et 

al., 2024). Site-specific fertilizer optimization reduced 

diammonium phosphate (DAP) use by 2.92–21.40 

kg/ha (Table S1), minimizing costs and environmental 

impacts (Gonçalves et al., 2021). 

This is the first study to operationalize such an 

integrated approach at the block level in a monsoon-

driven context, offering a scalable model for rainfed 

agroecosystems globally, from South Asia to Sub-

Saharan Africa (Quandt et al., 2023). The framework 

aligns with Sustainable Development Goals (SDGs) 2 

(Zero Hunger) and 13 (Climate Action) by improving 

food security and reducing emissions through 

optimized inputs. Future research should prioritize 

multi-season field validations to address the small 

sample size and synthetic data limitations, alongside 

developing mobile-based advisories to enhance farmer 

adoption (Willmes et al., 2024). This approach 

provides a robust blueprint for sustainable 

intensification in resource-constrained environments. 

Table 1: Assignment of Cuttack’s 14 blocks to three 

agro-climatic clusters based on k-means clustering. 

Block Cluster 

Athagarh 1 

Banki 1 

Damapada 1 

Kantapada 1 

Mahanga 1 

Nischintakoili 1 

Badamba 2 

Narasinghpur 2 

Salepur 2 

Tangi-Choudwar 2 

Tigiria 2 

Barang 3 

Cuttack Sadar 3 

Niali 3 

 

 
Table 2 : Mean agro-climatic characteristics of three clusters, including soil texture, SOC, and rainfall. 

Cluster pH 
Organic 

(g/kg) 

Nitrogen 

(kg/ha) 

Phosphorus 

(kg/ha) 

Potassium 

(kg/ha) 
Sand Clay 

Field 

Capacity 

Available 

Water 

Annual 

Rainfall 

(mm) 

Monsoon 

Rainfall 

(mm) 

Drought 

Frequency 

1 6.8 5.0 325.3 13.5 366.9 58.7 18.6 21.3 10.7 1651.7 1248.3 5.2 

2 7.2 3.9 241.0 13.4 290.0 66.6 13.0 17.5 9.4 1540.0 1130.0 6.4 

3 7.2 3.3 213.0 122.5 223.3 75.1 7.1 15.0 8.7 1550.0 1150.0 4.0 
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Table 3 : PCA loadings for 12 agro-climatic variables across principal components, highlighting contributions to 

PC1 and PC2. 
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 

pH 0.210 0.370 0.450 0.670 -0.240 0.220 -0.030 0.210 -0.110 0.000 0.090 -0.010 

Organic -0.330 0.040 0.140 -0.070 -0.370 0.070 -0.150 -0.210 0.130 0.720 -0.180 0.310 

Nitrogen -0.320 0.030 0.220 -0.200 -0.400 -0.070 -0.240 -0.210 0.020 -0.410 0.600 0.100 

Phosphorus 0.230 -0.370 0.470 -0.440 -0.250 0.150 0.270 0.460 0.120 0.080 0.010 -0.130 

Potassium -0.330 0.090 -0.050 0.000 0.230 -0.290 -0.410 0.720 -0.010 0.160 0.160 0.010 

Sand 0.310 0.020 0.330 -0.180 -0.010 -0.350 -0.550 -0.240 -0.310 0.030 -0.280 -0.340 

Clay -0.330 0.140 -0.040 0.100 -0.220 -0.390 0.460 -0.040 -0.100 0.170 0.070 -0.640 

Field Capacity -0.330 0.090 0.060 -0.030 -0.280 -0.130 0.100 0.180 -0.120 -0.470 -0.670 0.240 

Available Water -0.320 -0.150 -0.160 -0.020 -0.060 0.700 -0.280 0.050 -0.230 -0.050 -0.110 -0.460 

Annual Rainfall -0.280 -0.270 0.390 0.270 0.320 -0.040 -0.100 -0.170 0.630 -0.130 -0.150 -0.190 

Monsoon Rainfall -0.280 -0.300 0.380 0.080 0.400 0.000 0.230 -0.120 -0.620 0.080 0.110 0.230 

Drought Frequency -0.110 0.710 0.270 -0.440 0.370 0.230 0.140 -0.060 0.080 -0.010 -0.030 -0.060 

 
Table 4 : Yield gains under drought for Hira, Jaladidhan, and Pigeon Pea with 1–2 g/kg SOC enhancement. 

Crop 
Avg. Yield 

Baseline (kg/ha) 

Avg. Yield OC1 

 (kg/ha) 

Avg. Yield OC2 

(kg/ha) 

Avg. Gain OC1 

(kg/ha) 

Avg. Gain OC2 

(kg/ha) 

Hira 5865.52 6158.79 6452.07 293.28 586.55 

Jaladidhan 7089.85 7444.34 7798.83 354.49 708.98 

Pigeon Pea 2122.06 2185.72 2249.39 63.66 127.32 

 
Table 5  : Performance metrics of linear regression and random forest models for rice yield and DAP predictions. 

Model Rice Yield RMSE (kg/ha) DAP Needs RMSE (kg/ha) 

Linear Regression 115.15 7.37 

Random Forest 49.34 8.57 

Note: Root Mean Square Error (RMSE) values for Linear Regression and Random Forest models predicting rice 

yield and DAP fertilizer needs across 14 blocks in Cuttack district. Lower RMSE indicates better predictive 

performance 

 
Table S1 : Predicted rice yields and DAP needs across Cuttack’s 14 blocks, showing spatial variability. 

Block 

Rice 

Yield 

(kg/ha) 

DAP 

(kg/ha) 
pH 

Organic 

(g/kg) 

Nitrogen 

(kg/ha) 

Phosphorus 

 (kg/ha) 

Potassium 

(kg/ha) 

Annual 

Rainfall 

(mm) 

Monsoon 

Rainfall 

(mm) 

Drought 

Frequency 

Predicted 

_Rice 

Yield 

(kg/ha) 

Predicted 

DAP 

(kg/ha) 

Azhagar 4400 10.87 6.7 5 320 15 360 1660 1250 4 4393.1 13.36 

Badamba 3600 16.30 7 4 250 12.5 300 1500 1100 6 3651.3 15.07 

Banki 4500 20.65 6.6 5.2 350 10.5 431.6 1650 1250 8 4437.9 20.89 

Barang 3700 0.00 7.2 3.5 220 100 250 1550 1150 3 3669.2 3.35 

Cuttack_Sadar 3500 0.00 7.3 3.1 209 147.5 200 1550 1150 4 3657.0 2.92 

Damapada 4800 25.65 6.8 6.4 432 8.2 400 1700 1300 8 4531.9 21.40 

Kantapada 4300 4.35 7.5 4.5 280 18 340 1680 1270 5 4324.5 7.53 

Mahanga 4400 0.00 6.5 4.8 300 20 350 1620 1220 4 4356.7 11.77 

Narasinghpur 3400 13.04 7.4 3.8 240 14 280 1500 1100 8 3563.2 12.91 

Niali 3600 0.00 7.1 3.3 210 120 220 1550 1150 5 3654.8 2.99 

Nischintakoili 4200 23.91 6.4 4.2 270 9 320 1600 1200 2 4229.4 20.60 

Salepur 3800 19.57 6.9 4 260 11 310 1580 1180 7 3819.5 19.33 

Tangi-Choudwar 3900 8.70 7 3.9 230 16 290 1570 1170 6 3768.8 9.82 

Tigiria 3700 14.13 7.6 3.7 225 13.5 270 1550 1100 5 3649.5 12.00 
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Fig. 1: Block map of Cuttack district 

 

 
Fig. 2 : PCA biplot of Cuttack’s 14 blocks and 12 agro-climatic variables, showing PC1 (72.9%) and PC2 

(11.5%) driven by soil texture and water availability. 
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Fig. 3 : PCA biplot with k-means clustering, illustrating three agro-climatic zones based on soil  

and rainfall variables across Cuttack’s 14 blocks. 

 
Fig. 4 : Scree plot showing variance explained by each principal component, with PC1  

and PC2 explaining 84.4%. 

 
Fig. 5 : Predicted rice yields (kg/ha) across Cuttack’s 14 blocks, ranging from 3563.2 kg/ha (Narasinghpur) to 

4531.9 kg/ha (Damapada), with error bars representing random forest prediction uncertainty  

(RMSE: 49.34 kg/ha). 
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Fig. 6: Bar plot of relative importance of predictors for rice yield, with monsoon rainfall and field capacity 

explaining ~12–13% of variance. 

 
Fig. 7: Bar plot of yield gains for Hira, Jaladidhan, and Pigeon Pea under drought with 1–2 g/kg SOC 

enhancement. 

 
Fig. 8 : Residuals vs. fitted plot for the rice yield regression model, confirming linearity  

with outliers in Athagarh, Narasinghpur, and Nischintakoili. 
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Fig. 9 : Scale-location plot, indicating homoscedasticity of residuals across fitted values. 

 
Fig. 10 : Q-Q plot of standardized residuals, showing approximate normality with minor tail deviations. 

 
Fig. S1 : Correlation matrix of soil properties, climate factors, and agronomic outcomes in Cuttack. 
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Fig. S2 : Spatial variability in predicted DAP needs (kg/ha) across Cuttack’s 14 blocks. 

 

Highlights 

• Novel framework predicts rice yields with high 

accuracy (R² = 0.993) in Cuttack, India. 

• PCA and k-means clustering identify three agro-

climatic zones for tailored crop management. 

• SOC enhancement increases rice yields by up to 

708.98 kg/ha under drought stress. 

• Optimized DAP use (2.92–21.40 kg/ha reduction) 

enhances sustainability in rainfed systems. 

Scalable model for precision agriculture in global 

monsoon-dependent agroecosystems. 
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